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Universality of Brownian Motion

• Brownian universality: the limit random variable has the law
of Brownian motion despite of the exact law of microscopic
behaviors.

• Motivation: Go beyond the sum of independent random
variables. Do these results (CLT, local CLT, invariance
principle) also hold for other models (random walk in random
environments, particles with interactions, hard-sphere model
with collisions, etc)?
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Random Conductance Model

• Sample i.i.d. random conductance {a(e)}e∈Ed
.

• Let (Yt)t⩾0 be a continuous-time Markov jump process
starting from y, with an associated generator either

• variable speed random walk VSRW

La
V u(x) :=

∑
z∼x

a({x, z}) (u(z)− u(x)) ;

• constant speed random walk CSRW

La
Cu(x) :=

∑
z∼x

a({x, z})
π(x)

(u(z)− u(x)) ,

with π(x) :=
∑

z∼x a({x, z}).
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IP for RCM

Theorem (Invariance Principle)

When 0 < c ⩽ a ⩽ C < ∞, for almost every realization of
{a(e)}e∈Ed

, the scaling limit of VSRW or CSRW is Brownian
motion. (

1√
n
Ynt

)
t⩾0

⇒ (σ̄Bt)t⩾0.

• The condition a ∈ [c, C], i.i.d. is natural, but can be relaxed
to other cases including

• stationary ergodic environment;
• supercritical percolation model;
• degenerated i.i.d. conductance;
• long-range jump and Levy-type limit;
• ...

• Pioneer works by Sidoravicius, Sznitman, Biskup, Berger, Mathieu,
Piatnitski, Barlow, Hambly, Kumagai, Bella, Schäffner, Chen, Chen,
Wang, etc.
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Homogenization Theory

• Elliptic Dirichlet problem with random, symmetric,
Zd-stationary and ergodic coefficient in a large domain{

−∇ · (a∇u) = f in Qr,
u = g on ∂Qr.

• For very large r, the solution can be approximated by the
homogenized solution ū for{

−∇ · (ā∇ū) = f in Qr,
ū = g on ∂Qr,

where ā ∈ Rd×d is the (deterministic) effective coefficient.

• Approximation in the sense u ≃ ū in L2, and

gradient : ∇u ≃ ∇ū, f lux : a∇u ≃ ā∇ū in H−1.
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RCM and Homogenization

• Take f = 0 in both equations.

• Probabilistic representation is Ea[g(Yτ )] for the hitting time τ
of the boundary, which should be very close to that of
“E[g(σ̄Bτ )]”, with ā = 1

2 σ̄
2.

• Usually ā ̸= E[a].



Random Conductance Model Homogenization Interacting Particle Systems Main Results

Subadditive Quantity
• The averaged Dirichlet energy in finite volume captures the
nature

ν(U, p) := inf
ϕ∈H1

0 (U)

1

|U |

∫
U

1

2
(p+∇ϕ) · a(p+∇ϕ)

=
1

2
p · a(U)p.

• ν(U, p) is a subadditive quantity, i.e. U = ⊔n
i=1Ui,

ν(U, p) ⩽
n∑

i=1

|Ui|
|U |

ν(Ui, p).

• We define ā := limm→∞ E[a(Q3m)].

• Observed in Dal Maso-Modica’86 for elliptic equation, and
quantitative version in Armstrong-Smart’16 and developed in
Armstrong-Kuusi-Mourrat’17.
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Quantitative Homogenization

The renormalization approach now applies to various models: the
finite-difference equations on percolation clusters
(Armstrong-Dario’18, Dario’18, Dario-G.’21), the differential forms
(Dario 18), the “∇ϕ” interface model (Dario’19,
Armstrong-Wu’19), the Villain model (Dario-Wu’20), the Coulomb
gases (Armstrong-Serfaty’19), the interacting particle system
(Giunti-G.-Mourrat’22, Giunti-G.-Mourrat-Nitzschner’22).
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History
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Simple Symmetric Exclusion Process

• Configuration η : Zd → {0, 1}.
• Generator
Lf(η) = 1

2

∑
x∈Zd

∑
y∼x η(x)(1− η(y)) (f(ηx,y)− f(η)) with

ηx,y(z) =


η(z) z ̸= x, y;
η(y) z = x;
η(x) z = y.

• Stationary measure is product Bernoulli measure Ber(α)⊗Zd

with α ∈ (0, 1).

Figure: An illustration of SSEP.
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Simple Symmetric Exclusion Process

• Empirical measure πN
t := N−d

∑
x∈Zd ηN2t(x)δx/N .

• Hydrodynamic limit (πN
t )t⩾0

N→∞−−−−→ (ρt)t⩾0 with

∂tρt =
1

2
∆ρt.

• Equilibrium fluctuation

Y N
t := N− d

2
∑

x∈Zd (ηN2t(x)− α) δx/N converges to the
functional Ornstein–Uhlenbeck process (Yt)t⩾0 solving

dYt =
1

2
∆Yt dt+

√
α(1− α)∇dBt.
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Generalized Symmetric Exclusion Process

• Configuration η : Zd → {0, 1, · · · , κ}, κ ⩾ 2.

• Generator
Lf(η) = 1

2

∑
x∈Zd

∑
y∼x 1{η(x)>0,η(y)<κ} (f(η

x,y)− f(η)) ,
with

ηx,y(z) =


η(z) z ̸= x, y;

η(x)− 1 z = x;
η(y) + 1 z = y.

• Stationary measure Pα = ν⊗Zd

α with
να(n) =

αn∑κ
j=0 α

j , 0 ⩽ n ⩽ κ.

Figure: An illustration of GSEP with κ = 2.
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Generalized Symmetric Exclusion Process

• Hydrodynamic limit (πN
t )t⩾0

N→∞−−−−→ (ρt)t⩾0 with

∂tρt = ∇ · (D(ρt)∇ρt) .

proved in Varadhan’90, Kipnis-Landim-Olla’94,
Funaki-Uchiyama-Yau’96.

• Bulk diffusion matrix D(α) := ĉ(α)
2χ(α) , χ(α) := Varα[η(0)],

p · ĉ(α)p := inf
f∈C0

d∑
i=1

Eα

[
1{η(0)>0,η(ei)<κ}(pi +∇0,eiΓf (η))

2
]
,

with f local function and Γf (η̃) :=
∑

x∈Zd τxf(η̃).

• Observation: The bulk diffusion matrix should play the same
role as the effective coefficient.
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Diffusion on Continuum Configuration Space
• Particles seen as configuration µt =

∑∞
i=1 δXi

t
∈ Mδ(Rd).

• Diffusion matrix a◦ : Mδ(Rd) → Rd×d
sym

• locality: FB1
-measurable;

• uniform ellipticity: |ξ|2 ≤ ξ · a◦(µ)ξ ≤ Λ|ξ|2.
• stationarity: a(µ, x) := τxa◦(µ) = a◦(τ−xµ).

• (Xi
t)t⩾0 diffuses following ∇ · a(µt, X

i
t)∇ in Rd, where

a(µt, X
i
t) depends on the local configuration in B1(X

i
t).

• Construction of similar processes by Albeverio, Kondratiev,
Ma, Röckner 97-00 and functional inequalities by Röckner,
Wang’01.

Figure: Each particle diffuses following the generator ∇ · a∇, where a depends on the
position and the local configuration around the particle.
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Dirichlet Energy for Particle System

• Stationary measure Pρ as Poisson point process of density ρ.

• Derivative ∂kf(µ, x) := limh→0
1
h(f(µ− δx + δx+hek)− f(µ)).

• Finite volume approximation

ν(Qr, ρ, p)

:= inf
ϕ∈H 1

0 (Qr)
Eρ

[
1

ρ|Qr|

∫
Qr

1

2
(p+∇ϕ) · a(p+∇ϕ) dµ

]
=

1

2
p · ā(Qr, ρ)p.
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Main Result

Theorem (Giunti-G.-Mourrat, AoP 2022)

The limit ā(ρ) := limr→∞ ā(Qr, ρ) exists, coincides with the
definition of bulk diffusion matrix, and we have

|ā(Qr, ρ)− ā(ρ)| ⩽ Cr−α.

A joint work with Arianna Giunti and Jean-Christophe Mourrat.
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Proof

1. Renormalization approach.

2. Good function space on configuration space.

3. Modified Caccioppoli inequality.
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Proof: Subadditive Quantity

• Function space H 1(U) has finite Dirichlet energy in U , while
H 1

0 (U) is FK-measurable for K ⊂ U .

• Dual quantity

ν∗(Qr, ρ, q)

:= inf
v∈H 1(Qr)

Eρ

[
1

ρ|Qr|

∫
Qr

(
−1

2
∇v · a∇v + q · ∇v

)
dµ

]
=

1

2
q · a−1

∗ (U)q.

• ν, ν∗ are all subadditive quantities.

• Some similar qualitative result for SSEP is shown by
Landim-Olla-Varadhan’02.
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Rd-Classical Caccioppoli Inequality

• The classical Caccioppoli inequality for a-harmonic function
on Rd ∫

Qr

|∇ũ|2 ⩽ C

r2

∫
Q3r

|ũ|2.

• Elementary but an important step to establish the elliptic
regularity theory.
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Modified Caccioppoli inequality

• a-harmonic function on particle system

u ∈ A(U) ⇐⇒ ∀v ∈ H 1
0 (U),Eρ

[∫
U
∇u · a∇v dµ

]
= 0.

• There exists θ(d,Λ) ∈ (0, 1), such that for every u ∈ A(Q3r)

Eρ

[
1

ρ|Qr|

∫
Qr

∇(Ar+2u) · a∇(Ar+2u) dµ

]
⩽

C

r2ρ|Q3r|
Eρ[u

2] + θEρ

[
1

ρ|Q3r|

∫
Q3r

∇u · a∇udµ

]
.

• Asu := Eρ[u|FQs
].

• Proof = Classical Caccioppoli inequality (L2-martingale
structure) + Widman’s hole-filling technique + iterations.
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Further Discussions

• Regularity of the mapping ρ 7→ ā(ρ) ? C∞ is proved in
Giunti-G.-Nitzschner-Mourrat’22, but what about the
analyticity ?

• Hydrodynamic limit convergence rate.

• Homogenization for GSEP ? And more singular interactions ?
(In preparation with Tadahisa Funaki and Han Wang.)

• Application to other particle systems and other problems.
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Thanks for your attention.
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